Search results for "Formate dehydrogenase"
showing 3 items of 3 documents
Temperature dependence of dynamic, tunnelling and kinetic isotope effects in formate dehydrogenase
2018
The origin of the catalytic power of enzymes has been a question of debate for a long time. In this regard, the possible contribution of protein dynamics in enzymatic catalysis has become one of the most controversial topics. In the present work, the hydride transfer step in the formate dehydrogenase (FDH EC 1.2.1.2) enzyme is studied by means of molecular dynamic (MD) simulations with quantum mechanics/molecular mechanics (QM/MM) potentials in order to explore any correlation between dynamics, tunnelling effects and the rate constant. The temperature dependence of the kinetic isotope effects (KIEs), which is one of the few tests that can be studied by experiments and simulations to shed li…
Fumarate respiration of Wolinella succinogenes: enzymology, energetics and coupling mechanism.
2002
Wolinella succinogenes performs oxidative phosphorylation with fumarate instead of O2 as terminal electron acceptor and H2 or formate as electron donors. Fumarate reduction by these donors ('fumarate respiration') is catalyzed by an electron transport chain in the bacterial membrane, and is coupled to the generation of an electrochemical proton potential (Deltap) across the bacterial membrane. The experimental evidence concerning the electron transport and its coupling to Deltap generation is reviewed in this article. The electron transport chain consists of fumarate reductase, menaquinone (MK) and either hydrogenase or formate dehydrogenase. Measurements indicate that the Deltap is generat…
Do dynamic effects play a significant role in enzymatic catalysis? A theoretical analysis of formate dehydrogenase.
2010
A theoretical study of the protein dynamic effects on the hydride transfer between the formate anion and nicotinamide adenine dinucleotide (NAD + ), catalyzed by formate dehydrogenase (FDH), is presented in this paper. The analysis of free downhill molecular dynamic trajectories, performed in the enzyme and compared with the reaction in aqueous solution, has allowed the study of the dynamic coupling between the reacting fragments and the protein or the solvent water molecules, as well as an estimation of the dynamic effect contribution to the catalytic effect from calculation of the transmission coefficient in the enzyme and in solution. The obtained transmission coefficients for the enzyme…